Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(31): e2216127120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487091

RESUMO

Retroviruses and their host have coevolved in a delicate balance between viral replication and survival of the infected cell. In this equilibrium, restriction factors expressed by infected cells control different steps of retroviral replication such as entry, uncoating, nuclear import, expression, or budding. Here, we describe a mechanism of restriction against human T cell leukemia virus type 1 (HTLV-1) by the helicase-like transcription factor (HLTF). We show that RNA and protein levels of HLTF are reduced in primary T cells of HTLV-1-infected subjects, suggesting a clinical relevance. We further demonstrate that the viral oncogene Tax represses HLTF transcription via the Enhancer of zeste homolog 2 methyltransferase of the Polycomb repressive complex 2. The Tax protein also directly interacts with HLTF and induces its proteasomal degradation. RNA interference and gene transduction in HTLV-1-infected T cells derived from patients indicate that HLTF is a restriction factor. Restoring the normal levels of HLTF expression induces the dispersal of the Golgi apparatus and overproduction of secretory granules. By synergizing with Tax-mediated NF-κB activation, physiologically relevant levels of HLTF intensify the autophagic flux. Increased vesicular trafficking leads to an enlargement of the lysosomes and the production of large vacuoles containing viral particles. HLTF induction in HTLV-1-infected cells significantly increases the percentage of defective virions. In conclusion, HLTF-mediated activation of the autophagic flux blunts the infectious replication cycle of HTLV-1, revealing an original mode of viral restriction.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Leucemia de Células T , Humanos , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Produtos do Gene tax/genética , Produtos do Gene tax/metabolismo , Linfócitos T/metabolismo , NF-kappa B/metabolismo , Proteínas de Ligação a DNA
2.
Cell Death Dis ; 13(5): 476, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589698

RESUMO

The transcription factor nuclear factor-κB (NF-κB) has a key role in the pathogenesis of diabetes and its complications. Although activation of the canonical NF-κB pathway in ß-cells is generally deleterious, little is known about the role of the non-canonical NF-κB signalling and its main regulator, the NF-κB-inducing kinase (NIK), on pancreatic ß-cell survival and function. Previous studies based on models of NIK overexpression in pancreatic islet cells showed that NIK induced either spontaneous ß-cell death due to islet inflammation or glucose intolerance during diet-induced obesity (DIO) in mice. Therefore, NIK has been proposed as a potential target for diabetes therapy. However, no clear studies showed whether inhibition of NIK improves diabetes development. Here we show that genetic silencing of NIK in pancreatic ß-cells neither modifies diabetes incidence nor inflammatory responses in a mouse model of immune-mediated diabetes. Moreover, NIK silencing in DIO mice did not influence body weight gain, nor glucose metabolism. In vitro studies corroborated the in vivo findings in terms of ß-cell survival, function, and downstream gene regulation. Taken together, our data suggest that NIK activation is dispensable for the development of diabetes.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Animais , Diabetes Mellitus/patologia , Células Secretoras de Insulina/metabolismo , Camundongos , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/fisiologia
3.
JHEP Rep ; 3(6): 100354, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34704004

RESUMO

BACKGROUND & AIMS: Immune-mediated induction of cytidine deaminase APOBEC3B (A3B) expression leads to HBV covalently closed circular DNA (cccDNA) decay. Here, we aimed to decipher the signalling pathway(s) and regulatory mechanism(s) involved in A3B induction and related HBV control. METHODS: Differentiated HepaRG cells (dHepaRG) knocked-down for NF-κB signalling components, transfected with siRNA or micro RNAs (miRNA), and primary human hepatocytes ± HBV or HBVΔX or HBV-RFP, were treated with lymphotoxin beta receptor (LTßR)-agonist (BS1). The biological outcomes were analysed by reverse transcriptase-qPCR, immunoblotting, luciferase activity, chromatin immune precipitation, electrophoretic mobility-shift assay, targeted-bisulfite-, miRNA-, RNA-, genome-sequencing, and mass-spectrometry. RESULTS: We found that canonical and non-canonical NF-κB signalling pathways are mandatory for A3B induction and anti-HBV effects. The degree of immune-mediated A3B production is independent of A3B promoter demethylation but is controlled post-transcriptionally by the miRNA 138-5p expression (hsa-miR-138-5p), promoting A3B mRNA decay. Hsa-miR-138-5p over-expression reduced A3B levels and its antiviral effects. Of note, established infection inhibited BS1-induced A3B expression through epigenetic modulation of A3B promoter. Twelve days of treatment with a LTßR-specific agonist BS1 is sufficient to reduce the cccDNA pool by 80% without inducing significant damages to a subset of cancer-related host genes. Interestingly, the A3B-mediated effect on HBV is independent of the transcriptional activity of cccDNA as well as on rcDNA synthesis. CONCLUSIONS: Altogether, A3B represents the only described enzyme to target both transcriptionally active and inactive cccDNA. Thus, inhibiting hsa-miR-138-5p expression should be considered in the combinatorial design of new therapies against HBV, especially in the context of immune-mediated A3B induction. LAY SUMMARY: Immune-mediated induction of cytidine deaminase APOBEC3B is transcriptionally regulated by NF-κB signalling and post-transcriptionally downregulated by hsa-miR-138-5p expression, leading to cccDNA decay. Timely controlled APOBEC3B-mediated cccDNA decay occurs independently of cccDNA transcriptional activity and without damage to a subset of cancer-related genes. Thus, APOBEC3B-mediated cccDNA decay could offer an efficient therapeutic alternative to target hepatitis B virus chronic infection.

4.
Hepatology ; 74(4): 1766-1781, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33991110

RESUMO

BACKGROUND AND AIMS: Therapeutic strategies against HBV focus, among others, on the activation of the immune system to enable the infected host to eliminate HBV. Hypoxia-inducible factor 1 alpha (HIF1α) stabilization has been associated with impaired immune responses. HBV pathogenesis triggers chronic hepatitis-related scaring, leading inter alia to modulation of liver oxygenation and transient immune activation, both factors playing a role in HIF1α stabilization. APPROACH AND RESULTS: We addressed whether HIF1α interferes with immune-mediated induction of the cytidine deaminase, apolipoprotein B mRNA editing enzyme catalytic subunit 3B (APOBEC3B; A3B), and subsequent covalently closed circular DNA (cccDNA) decay. Liver biopsies of chronic HBV (CHB) patients were analyzed by immunohistochemistry and in situ hybridization. The effect of HIF1α induction/stabilization on differentiated HepaRG or mice ± HBV ± LTßR-agonist (BS1) was assessed in vitro and in vivo. Induction of A3B and subsequent effects were analyzed by RT-qPCR, immunoblotting, chromatin immunoprecipitation, immunocytochemistry, and mass spectrometry. Analyzing CHB highlighted that areas with high HIF1α levels and low A3B expression correlated with high HBcAg, potentially representing a reservoir for HBV survival in immune-active patients. In vitro, HIF1α stabilization strongly impaired A3B expression and anti-HBV effect. Interestingly, HIF1α knockdown was sufficient to rescue the inhibition of A3B up-regulation and -mediated antiviral effects, whereas HIF2α knockdown had no effect. HIF1α stabilization decreased the level of v-rel reticuloendotheliosis viral oncogene homolog B protein, but not its mRNA, which was confirmed in vivo. Noteworthy, this function of HIF1α was independent of its partner, aryl hydrocarbon receptor nuclear translocator. CONCLUSIONS: In conclusion, inhibiting HIF1α expression or stabilization represents an anti-HBV strategy in the context of immune-mediated A3B induction. High HIF1α, mediated by hypoxia or inflammation, offers a reservoir for HBV survival in vivo and should be considered as a restricting factor in the development of immune therapies.


Assuntos
Citidina Desaminase/genética , Hepatite B Crônica/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fígado/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Fator de Transcrição RelB/genética , Aminoácidos Dicarboxílicos/farmacologia , Animais , Linhagem Celular , Citidina Desaminase/metabolismo , DNA Circular/metabolismo , Regulação para Baixo , Técnicas de Silenciamento de Genes , Vírus da Hepatite B , Hepatite B Crônica/metabolismo , Hepatite B Crônica/virologia , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Receptor beta de Linfotoxina/agonistas , Camundongos , Viabilidade Microbiana , Antígenos de Histocompatibilidade Menor/metabolismo , RNA Mensageiro/metabolismo , Fator de Transcrição RelB/efeitos dos fármacos , Fator de Transcrição RelB/metabolismo
6.
Nature ; 588(7836): 151-156, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33149305

RESUMO

Lymphotoxin ß-receptor (LTßR) signalling promotes lymphoid neogenesis and the development of tertiary lymphoid structures1,2, which are associated with severe chronic inflammatory diseases that span several organ systems3-6. How LTßR signalling drives chronic tissue damage particularly in the lung, the mechanism(s) that regulate this process, and whether LTßR blockade might be of therapeutic value have remained unclear. Here we demonstrate increased expression of LTßR ligands in adaptive and innate immune cells, enhanced non-canonical NF-κB signalling, and enriched LTßR target gene expression in lung epithelial cells from patients with smoking-associated chronic obstructive pulmonary disease (COPD) and from mice chronically exposed to cigarette smoke. Therapeutic inhibition of LTßR signalling in young and aged mice disrupted smoking-related inducible bronchus-associated lymphoid tissue, induced regeneration of lung tissue, and reverted airway fibrosis and systemic muscle wasting. Mechanistically, blockade of LTßR signalling dampened epithelial non-canonical activation of NF-κB, reduced TGFß signalling in airways, and induced regeneration by preventing epithelial cell death and activating WNT/ß-catenin signalling in alveolar epithelial progenitor cells. These findings suggest that inhibition of LTßR signalling represents a viable therapeutic option that combines prevention of tertiary lymphoid structures1 and inhibition of apoptosis with tissue-regenerative strategies.


Assuntos
Pulmão/efeitos dos fármacos , Pulmão/fisiologia , Receptor beta de Linfotoxina/antagonistas & inibidores , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Wnt/agonistas , Imunidade Adaptativa , Envelhecimento/metabolismo , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Animais , Apoptose/efeitos dos fármacos , Enfisema/metabolismo , Feminino , Humanos , Imunidade Inata , Pulmão/metabolismo , Receptor beta de Linfotoxina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumaça/efeitos adversos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
7.
J Hepatol ; 72(5): 960-975, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31954207

RESUMO

BACKGROUND & AIMS: Hepatic innate immune control of viral infections has largely been attributed to Kupffer cells, the liver-resident macrophages. However, hepatocytes, the parenchymal cells of the liver, also possess potent immunological functions in addition to their known metabolic functions. Owing to their abundance in the liver and known immunological functions, we aimed to investigate the direct antiviral mechanisms employed by hepatocytes. METHODS: Using lymphocytic choriomeningitis virus (LCMV) as a model of liver infection, we first assessed the role of myeloid cells by depletion prior to infection. We investigated the role of hepatocyte-intrinsic innate immune signaling by infecting mice lacking canonical NF-κB signaling (IkkßΔHep) specifically in hepatocytes. In addition, mice lacking hepatocyte-specific interferon-α/ß signaling-(IfnarΔHep), or interferon-α/ß signaling in myeloid cells-(IfnarΔMyel) were infected. RESULTS: Here, we demonstrate that LCMV activates NF-κB signaling in hepatocytes. LCMV-triggered NF-κB activation in hepatocytes did not depend on Kupffer cells or TNFR1 signaling but rather on Toll-like receptor signaling. LCMV-infected IkkßΔHep livers displayed strongly elevated viral titers due to LCMV accumulation within hepatocytes, reduced interferon-stimulated gene (ISG) expression, delayed intrahepatic immune cell influx and delayed intrahepatic LCMV-specific CD8+ T cell responses. Notably, viral clearance and ISG expression were also reduced in LCMV-infected primary hepatocytes lacking IKKß, demonstrating a hepatocyte-intrinsic effect. Similar to livers of IkkßΔHep mice, enhanced hepatocytic LCMV accumulation was observed in livers of IfnarΔHep mice, whereas IfnarΔMyel mice were able to control LCMV infection. Hepatocytic NF-κB signaling was also required for efficient ISG induction in HDV-infected dHepaRG cells and interferon-α/ß-mediated inhibition of HBV replication in vitro. CONCLUSIONS: Together, these data show that hepatocyte-intrinsic NF-κB is a vital amplifier of interferon-α/ß signaling, which is pivotal for strong early ISG responses, immune cell infiltration and hepatic viral clearance. LAY SUMMARY: Innate immune cells have been ascribed a primary role in controlling viral clearance upon hepatic infections. We identified a novel dual role for NF-κB signaling in infected hepatocytes which was crucial for maximizing interferon responses and initiating adaptive immunity, thereby efficiently controlling hepatic virus replication.


Assuntos
Hepacivirus/genética , Hepatite C Crônica/genética , Hepatite C Crônica/imunologia , Hepatócitos/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Subunidade p50 de NF-kappa B/genética , Polimorfismo de Nucleotídeo Único , Fator de Transcrição RelA/metabolismo , Replicação Viral/genética , Adulto , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Genótipo , Hepatite C Crônica/virologia , Humanos , Quinase I-kappa B/deficiência , Quinase I-kappa B/genética , Coriomeningite Linfocítica/virologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais , Adulto Jovem
8.
Cell Mol Life Sci ; 75(15): 2827-2841, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29435596

RESUMO

RIPK4 is a key player in epidermal differentiation and barrier formation. RIPK4 signaling pathways controlling keratinocyte proliferation and differentiation depend on its kinase activity leading to Dvl2, Pkp1 and IRF6 phosphorylation and NF-κB activation. However, the mechanism regulating RIPK4 activity levels remains elusive. We show that cultured keratinocytes display constitutive active phosphorylated RIPK4 while PKC signaling can trigger RIPK4 activation in various non-keratinocyte cell lines, in which RIPK4 is present in a non-phosphorylated state. Interestingly, we identified the SCFß-TrCP ubiquitin E3 ligase complex responsible for regulating the active RIPK4 protein level. The SCFß-TrCP complex binds to a conserved phosphodegron motif in the intermediate domain of RIPK4, subsequently leading to K48-linked ubiquitinylation and degradation. The recruitment of ß-TrCP is dependent on RIPK4 activation and trans-autophosphorylation. ß-TrCP knock-down resulted in RIPK4-dependent formation of actin stress fibers, cell scattering and increased cell motility, suggesting that tight control of RIPK4 activity levels is crucial to maintain cell shape and behavior in keratinocytes.


Assuntos
Actinas/metabolismo , Queratinócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Células A549 , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteólise , Interferência de RNA , Fibras de Estresse/metabolismo
9.
Gut ; 67(9): 1663-1673, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28774888

RESUMO

OBJECTIVE: Chronic pancreatitis (CP) and autoimmune pancreatitis (AIP) are characterised by different inflammatory processes. If pancreatic inflammation is a prerequisite for autoimmunity is still unclear. AIP is considered mostly a T cell-mediated disease; however, in induction of CP, macrophages play a pivotal role. p21-a member of cyclin-dependent kinase inhibitors-can influence inflammatory processes, in particular can regulate T cell activation and promote macrophage development. We therefore examined the role of p21-mediated inflammation in AIP. DESIGN: We intercrossed lymphotoxin (LT) overexpressing mice (Tg(Ela1-LTa,b))-a model to study AIP development-with p21-deficient mice. Furthermore, we characterised p21 expression in human AIP and non-AIP specimens. RESULTS: p21 deficiency in LT mice (LTp21-/-) prevented early pancreatic injury and reduced inflammation. In acinar cells, diminished proliferation and abrogated activation of non-canonical nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) pathway was observed. In contrast, 12-month-old LT mice with and without p21 had similar inflammatory signatures and T-B cell infiltration. Interestingly, LT and LTp21-/- mice had comparable tertiary lymphoid organs (TLOs), autoantibodies and elevated IgG levels. However, acinar cell proliferation, acinar-to-ductal metaplasia and acinar non-canonical NF-κB pathway activation remained impaired in LTp21-/- pancreata. CONCLUSIONS: Our findings indicate that p21 is crucial for pancreatic inflammation in LT-driven pancreatic injury. p21 is involved in early acinar secretion of inflammatory mediators that attract innate immune cells. However, p21 is not essential for humoral immune response, accountable for autoimmunity. Remarkably, p21 renders acinar cells less susceptible to proliferation and transdifferentiation. We therefore suggest that AIP can also develop independent of chronic inflammatory processes.


Assuntos
Doenças Autoimunes/genética , Mutagênese , Pancreatite Crônica/genética , Linfócitos T/metabolismo , Quinases Ativadas por p21/genética , Animais , Doenças Autoimunes/complicações , Biomarcadores/sangue , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Pancreatite Crônica/complicações
10.
Cancer Cell ; 32(3): 342-359.e10, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28898696

RESUMO

Concomitant hepatocyte apoptosis and regeneration is a hallmark of chronic liver diseases (CLDs) predisposing to hepatocellular carcinoma (HCC). Here, we mechanistically link caspase-8-dependent apoptosis to HCC development via proliferation- and replication-associated DNA damage. Proliferation-associated replication stress, DNA damage, and genetic instability are detectable in CLDs before any neoplastic changes occur. Accumulated levels of hepatocyte apoptosis determine and predict subsequent hepatocarcinogenesis. Proliferation-associated DNA damage is sensed by a complex comprising caspase-8, FADD, c-FLIP, and a kinase-dependent function of RIPK1. This platform requires a non-apoptotic function of caspase-8, but no caspase-3 or caspase-8 cleavage. It may represent a DNA damage-sensing mechanism in hepatocytes that can act via JNK and subsequent phosphorylation of the histone variant H2AX.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Caspase 8/metabolismo , Dano ao DNA , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Animais , Apoptose , Carcinoma Hepatocelular/patologia , Proliferação de Células , Senescência Celular , Doença Crônica , Cruzamentos Genéticos , Reparo do DNA , Proteína de Domínio de Morte Associada a Fas/metabolismo , Feminino , Instabilidade Genômica , Hepatectomia , Hepatócitos/patologia , Histonas/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fígado/metabolismo , Fígado/patologia , Regeneração Hepática , Masculino , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fatores de Risco
11.
Biochim Biophys Acta ; 1865(2): 204-19, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26923876

RESUMO

The LTα1ß2 and LIGHT TNF superfamily cytokines exert pleiotropic physiological functions through the activation of their cognate lymphotoxin-ß receptor (LTßR). Interestingly, since the discovery of these proteins, accumulating evidence has pinpointed a role for LTßR signaling in carcinogenesis. Early studies have shown a potential anti-tumoral role in a subset of solid cancers either by triggering apoptosis in malignant cells or by eliciting an anti-tumor immune response. However, more recent studies provided robust evidence that LTßR signaling is also involved in diverse cell-intrinsic and microenvironment-dependent pro-oncogenic mechanisms, affecting several solid and hematological malignancies. Consequently, the usefulness of LTßR signaling axis blockade has been investigated as a potential therapeutic approach for cancer. Considering the seemingly opposite roles of LTßR signaling in diverse cancer types and their key implications for therapy, we here extensively review the different mechanisms by which LTßR activation affects carcinogenesis, focusing on the diverse contexts and different models assessed.


Assuntos
Receptor beta de Linfotoxina/fisiologia , Neoplasias/etiologia , Transdução de Sinais/fisiologia , Animais , Humanos , Inflamação/etiologia , NF-kappa B/fisiologia , Microambiente Tumoral , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/fisiologia
12.
Br J Haematol ; 171(5): 736-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26456771

RESUMO

Lymphotoxin-mediated activation of the lymphotoxin-ß receptor (LTßR; LTBR) has been implicated in cancer, but its role in T-cell acute lymphoblastic leukaemia (T-ALL) has remained elusive. Here we show that the genes encoding lymphotoxin (LT)-α and LTß (LTA, LTB) are expressed in T-ALL patient samples, mostly of the TAL/LMO molecular subtype, and in the TEL-JAK2 transgenic mouse model of cortical/mature T-ALL (Lta, Ltb). In these mice, expression of Lta and Ltb is elevated in early stage T-ALL. Surface LTα1 ß2 protein is expressed in primary mouse T-ALL cells, but only in the absence of microenvironmental LTßR interaction. Indeed, surface LT expression is suppressed in leukaemic cells contacting Ltbr-expressing but not Ltbr-deficient stromal cells, both in vitro and in vivo, thus indicating that dynamic surface LT expression in leukaemic cells depends on interaction with its receptor. Supporting the notion that LT signalling plays a role in T-ALL, inactivation of Ltbr results in a significant delay in TEL-JAK2-induced leukaemia onset. Moreover, young asymptomatic TEL-JAK2;Ltbr(-/-) mice present markedly less leukaemic thymocytes than age-matched TEL-JAK2;Ltbr(+/+) mice and interference with LTßR function at this early stage delayed T-ALL development. We conclude that LT expression by T-ALL cells activates LTßR signalling in thymic stromal cells, thus promoting leukaemogenesis.


Assuntos
Receptor beta de Linfotoxina/fisiologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Linhagem da Célula/genética , Expressão Gênica/genética , Humanos , Imunofenotipagem , Janus Quinase 2/genética , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Transdução de Sinais , Microambiente Tumoral/genética
13.
Mol Cell ; 60(1): 63-76, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26344099

RESUMO

TNF is a master pro-inflammatory cytokine. Activation of TNFR1 by TNF can result in both RIPK1-independent apoptosis and RIPK1 kinase-dependent apoptosis or necroptosis. These cell death outcomes are regulated by two distinct checkpoints during TNFR1 signaling. TNF-mediated NF-κB-dependent induction of pro-survival or anti-apoptotic molecules is a well-known late checkpoint in the pathway, protecting cells from RIPK1-independent death. On the other hand, the molecular mechanism regulating the contribution of RIPK1 to cell death is far less understood. We demonstrate here that the IKK complex phosphorylates RIPK1 at TNFR1 complex I and protects cells from RIPK1 kinase-dependent death, independent of its function in NF-κB activation. We provide in vitro and in vivo evidence that inhibition of IKKα/IKKß or its upstream activators sensitizes cells to death by inducing RIPK1 kinase-dependent apoptosis or necroptosis. We therefore report on an unexpected, NF-κB-independent role for the IKK complex in protecting cells from RIPK1-dependent death downstream of TNFR1.


Assuntos
Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Caspase 8/metabolismo , Morte Celular , Linhagem Celular , Embrião de Mamíferos/citologia , Proteína de Domínio de Morte Associada a Fas/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Camundongos , Fosforilação , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia
14.
J Immunol ; 194(10): 4951-62, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25876765

RESUMO

DUSP3 is a small dual-specificity protein phosphatase with an unknown physiological function. We report that DUSP3 is strongly expressed in human and mouse monocytes and macrophages, and that its deficiency in mice promotes tolerance to LPS-induced endotoxin shock and to polymicrobial septic shock after cecal ligation and puncture. By using adoptive transfer experiments, we demonstrate that resistance to endotoxin is macrophage dependent and transferable, and that this protection is associated with a striking increase of M2-like macrophages in DUSP3(-/-) mice in both the LPS and cecal ligation and puncture models. We show that the altered response of DUSP3(-/-) mice to sepsis is reflected in decreased TNF production and impaired ERK1/2 activation. Our results demonstrate that DUSP3 plays a key and nonredundant role as a regulator of innate immune responses by mechanisms involving the control of ERK1/2 activation, TNF secretion, and macrophage polarization.


Assuntos
Fosfatase 3 de Especificidade Dupla/imunologia , Imunidade Inata/imunologia , Macrófagos/imunologia , Choque Séptico/imunologia , Transdução de Sinais/imunologia , Transferência Adotiva , Animais , Western Blotting , Fosfatase 3 de Especificidade Dupla/deficiência , Citometria de Fluxo , Deleção de Genes , Humanos , Tolerância Imunológica , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Methods Mol Biol ; 1280: 103-19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25736746

RESUMO

The alternative or noncanonical NF-κB pathway regulates the generation of p52-containing NF-κB dimers (e.g., p52/RelB) through a partial degradation (called processing) of the precursor p100 into p52. This pathway is activated by a subset of non-death TNF receptor members, which ultimately activate two kinases: NIK (NF-κB-Inducing Kinase) and IKKα (Inhibitor of κB Kinase alpha). These kinases create a phosphodegron for the E3 ligase SCF-ß-TrCP that covalently binds K48-linked polyubiquitin chain onto p100 prior to its proteasomal processing. The resulting p52-containing complexes translocate into the nucleus to activate target genes involved in secondary lymphoid organ development, B cell survival or in osteoclastogenesis. We describe in this chapter straightforward methods to monitor the activation of the alternative NF-κB pathway. These methods uncover cytosolic and nuclear biochemical modifications of key proteins of the alternative NF-κB pathway required prior to the transcription of NF-κB target genes.


Assuntos
NF-kappa B/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais , Anticorpos Monoclonais/farmacologia , Ensaio de Desvio de Mobilidade Eletroforética , Ativação Enzimática , Estabilidade Enzimática , Humanos , Quinase I-kappa B/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Ligantes , Subunidade p52 de NF-kappa B/metabolismo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Proteólise , Receptores do Fator de Necrose Tumoral/agonistas , Transdução de Sinais/efeitos dos fármacos , Fator 2 Associado a Receptor de TNF/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo , Fator de Transcrição RelB/metabolismo
16.
J Immunol ; 194(8): 3970-83, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25780039

RESUMO

Endosomes have important roles in intracellular signal transduction as a sorting platform. Signaling cascades from TLR engagement to IRF3-dependent gene transcription rely on endosomes, yet the proteins that specifically recruit IRF3-activating molecules to them are poorly defined. We show that adaptor protein containing a pleckstrin-homology domain, a phosphotyrosine-binding domain, and a leucine zipper motif (APPL)1, an early endosomal protein, is required for both TRIF- and retinoic acid-inducible gene 1-dependent signaling cascades to induce IRF3 activation. APPL1, but not early endosome Ag 1, deficiency impairs IRF3 target gene expression upon engagement of both TLR3 and TLR4 pathways, as well as in H1N1-infected macrophages. The IRF3-phosphorylating kinases TBK1 and IKKε are recruited to APPL1 endosomes in LPS-stimulated macrophages. Interestingly, APPL1 undergoes proteasome-mediated degradation through ERK1/2 to turn off signaling. APPL1 degradation is blocked when signaling through the endosome is inhibited by chloroquine or dynasore. Therefore, APPL1 endosomes are critical for IRF3-dependent gene expression in response to some viral and bacterial infections in macrophages. Those signaling pathways involve the signal-induced degradation of APPL1 to prevent aberrant IRF3-dependent gene expression linked to immune diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Quinase I-kappa B/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Receptor 3 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antirreumáticos/farmacologia , Cloroquina/farmacologia , Endossomos/genética , Endossomos/imunologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Células HEK293 , Humanos , Hidrazonas/farmacologia , Quinase I-kappa B/genética , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/imunologia , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/imunologia , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/imunologia , Proteínas Serina-Treonina Quinases/genética , Proteólise/efeitos dos fármacos , Receptor 3 Toll-Like/genética , Receptor 4 Toll-Like/genética
17.
Science ; 343(6176): 1221-8, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24557838

RESUMO

Current antiviral agents can control but not eliminate hepatitis B virus (HBV), because HBV establishes a stable nuclear covalently closed circular DNA (cccDNA). Interferon-α treatment can clear HBV but is limited by systemic side effects. We describe how interferon-α can induce specific degradation of the nuclear viral DNA without hepatotoxicity and propose lymphotoxin-ß receptor activation as a therapeutic alternative. Interferon-α and lymphotoxin-ß receptor activation up-regulated APOBEC3A and APOBEC3B cytidine deaminases, respectively, in HBV-infected cells, primary hepatocytes, and human liver needle biopsies. HBV core protein mediated the interaction with nuclear cccDNA, resulting in cytidine deamination, apurinic/apyrimidinic site formation, and finally cccDNA degradation that prevented HBV reactivation. Genomic DNA was not affected. Thus, inducing nuclear deaminases-for example, by lymphotoxin-ß receptor activation-allows the development of new therapeutics that, in combination with existing antivirals, may cure hepatitis B.


Assuntos
Antivirais/farmacologia , DNA Circular/metabolismo , DNA Viral/metabolismo , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B/tratamento farmacológico , Hepatócitos/efeitos dos fármacos , Interferon-alfa/farmacologia , Receptor beta de Linfotoxina/agonistas , Animais , Anticorpos Monoclonais , Antivirais/uso terapêutico , Linhagem Celular , Núcleo Celular/virologia , Citidina/metabolismo , Citidina Desaminase/biossíntese , Vírus da Hepatite B/metabolismo , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Interferon-alfa/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/virologia , Receptor beta de Linfotoxina/antagonistas & inibidores , Camundongos SCID , Antígenos de Histocompatibilidade Menor , Proteínas , Regulação para Cima
18.
Sci Signal ; 7(311): ra13, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24497610

RESUMO

Precise regulation of nuclear factor κB (NF-κB) signaling is crucial for normal immune responses, and defective NF-κB activity underlies a range of immunodeficiencies. NF-κB is activated through two signaling cascades: the classical and noncanonical pathways. The classical pathway requires inhibitor of κB kinase ß (IKKß) and NF-κB essential modulator (NEMO), and hypomorphic mutations in the gene encoding NEMO (ikbkg) lead to inherited immunodeficiencies, collectively termed NEMO-ID. Noncanonical NF-κB activation requires NF-κB-inducing kinase (NIK) and IKKα, but not NEMO. We found that noncanonical NF-κB was basally active in peripheral blood mononuclear cells from NEMO-ID patients and that noncanonical NF-κB signaling was similarly enhanced in cell lines lacking functional NEMO. NIK, which normally undergoes constitutive degradation, was aberrantly present in resting NEMO-deficient cells, and regulation of its abundance was rescued by reconstitution with full-length NEMO, but not a mutant NEMO protein unable to physically associate with IKKα or IKKß. Binding of NEMO to IKKα was not required for ligand-dependent stabilization of NIK or noncanonical NF-κB signaling. Rather, an intact and functional IKK complex was essential to suppress basal NIK activity in unstimulated cells. Despite interacting with IKKα and IKKß to form an IKK complex, NEMO mutants associated with immunodeficiency failed to rescue classical NF-κB signaling or reverse the accumulation of NIK. Together, these findings identify a crucial role for classical NF-κB activity in the suppression of basal noncanonical NF-κB signaling.


Assuntos
Síndromes de Imunodeficiência/metabolismo , Leucócitos Mononucleares/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Immunoblotting , Síndromes de Imunodeficiência/genética , Células Jurkat , Leucócitos Mononucleares/efeitos dos fármacos , Camundongos , Mutação , Subunidade p52 de NF-kappa B/metabolismo , Células NIH 3T3 , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/farmacologia
19.
Cytokine Growth Factor Rev ; 22(5-6): 301-10, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22152226

RESUMO

This review focuses on the biological functions and signalling pathways activated by Lymphotoxin α (LTα)/Lymphotoxin ß (LTß) and their receptor LTßR. Genetic mouse models shed light on crucial roles for LT/LTßR to build and to maintain the architecture of lymphoid organs and to ensure an adapted immune response against invading pathogens. However, chronic inflammation, autoimmunity, cell death or cancer development are disorders that occur when the LT/LTßR system is twisted. Biological inhibitors, such as antagonist antibodies or decoy receptors, have been developed and used in clinical trials for diseases associated to the LT/LTßR system. Recent progress in the understanding of cellular trafficking and NF-κB signalling pathways downstream of LTα/LTß may bring new opportunities to develop therapeutics that target the pathological functions of these cytokines.


Assuntos
Heterotrímero de Linfotoxina alfa1 e beta2/imunologia , Receptor beta de Linfotoxina/imunologia , Linfotoxina-alfa/imunologia , Linfotoxina-beta/imunologia , Animais , Morte Celular , Expressão Gênica , Humanos , Heterotrímero de Linfotoxina alfa1 e beta2/química , Receptor beta de Linfotoxina/química , Linfotoxina-alfa/química , Linfotoxina-alfa/genética , Linfotoxina-beta/química , Linfotoxina-beta/genética , NF-kappa B/imunologia , Estrutura Terciária de Proteína , Receptores Tipo I de Fatores de Necrose Tumoral/química , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/química , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Transdução de Sinais
20.
Mol Cell Biol ; 31(21): 4319-34, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21896778

RESUMO

Several tumor necrosis factor receptor (TNFR) family members activate both the classical and the alternative NF-κB pathways. However, how a single receptor engages these two distinct pathways is still poorly understood. Using lymphotoxin ß receptor (LTßR) as a prototype, we showed that activation of the alternative, but not the classical, NF-κB pathway relied on internalization of the receptor. Further molecular analyses revealed a specific cytosolic region of LTßR essential for its internalization, TRAF3 recruitment, and p100 processing. Interestingly, we found that dynamin-dependent, but clathrin-independent, internalization of LTßR appeared to be required for the activation of the alternative, but not the classical, NF-κB pathway. In vivo, ligand-induced internalization of LTßR in mesenteric lymph node stromal cells correlated with induction of alternative NF-κB target genes. Thus, our data shed light on LTßR cellular trafficking as a process required for specific biological functions of NF-κB.


Assuntos
Heterotrímero de Linfotoxina alfa1 e beta2/metabolismo , Receptor beta de Linfotoxina/metabolismo , NF-kappa B/metabolismo , Animais , Sequência de Bases , Transporte Biológico Ativo , Cadeias Pesadas de Clatrina/antagonistas & inibidores , Cadeias Pesadas de Clatrina/genética , Cadeias Pesadas de Clatrina/metabolismo , Citosol/metabolismo , Dinamina II/antagonistas & inibidores , Dinamina II/genética , Dinamina II/metabolismo , Células HEK293 , Células HeLa , Humanos , Receptor beta de Linfotoxina/química , Receptor beta de Linfotoxina/deficiência , Receptor beta de Linfotoxina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Subunidade p52 de NF-kappa B/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais , Fator 3 Associado a Receptor de TNF/metabolismo , Fator de Transcrição RelB/deficiência , Fator de Transcrição RelB/genética , Fator de Transcrição RelB/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...